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Bayesian perception

One may even say, strictly speaking, that almost

all our knowledge is only probable; and in the

small number of things that we are able to know

with certainty, the principles means of arriving at

the truth -induction and analogy- are based on

probabilities.

Pierre Simon Laplace. Theorie analytique des

probabilities. 1825.



Perception is a probabilistic process

▪ 𝑃 𝑘|𝑥 the conditional probability of evoking spike rate 
𝑘 given that stimulus 𝑥 was presented (called likelihood 
for observed 𝑘)

▪ 𝑃 𝑥|𝑘 the conditional probability of observing stimulus 
𝑥 given 𝑘 was recorded

So far we have seen this for k spikes, but the 
representation can also be modeled as an “abstract 
variable”. 



How does the brain create 
a coherent and 
unambiguous percept 
based on multiple sensory 
streams?



Visual-haptic cue integration

Description: In the visual-haptic setup, 
observers view the reflection of the 

visual stimulus binocularly in a mirror 

using stereo goggles. The haptic 

stimulus is presented using two force-

feedback devices, one each for the 
index finger and thumb. With this setup 

the visual and the haptic virtual scenes 

can be independently manipulated.

Paradigm: 2-interval forced-choice

(2-IFC) task:

Is h taller than h0?

Ernst, M. O. (2006). A Bayesian View on Multimodal Cue Integration Oxford University Press.



Bayesian formulation
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Bayesian formulation
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Bayesian cue integration
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Bayesian cue integration
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Mean and variance of the joint estimate
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Or equivalently: 

You’ll demonstrate this in the exercises!



Bayesian cue integration
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Do humans behave 
according to this theory?



Humans (can) optimally integrate vision and haptic 
information

Ernst & Banks, Nature 2002

Ernst, M. O. (2006). A Bayesian View on Multimodal Cue Integration Oxford University Press.



Path integration and 
attractor models



Animal navigation

https://animallives.org
as captured from 11 March 2021 to 3 November 2021 via GPS 

https://animallives.org/


Using various external cues:

▪ Remembering landmarks

▪ Magnetoreception

▪ Olfaction

▪ Polarized light (e.g., bees)

▪ Sun/moon/stars

▪ Way-marking (e.g., wood-mice)

Alternative:

By path integration/dead 
reckoning…

How do animals navigate?

Dung Beetles Use the Milky Way for Orientation, Dacke et al. Current Biology 2013



Path integration 

Srinivasan, Journal of Comparative Physiology A, 2015



How do ants estimate the distance?

Wittlinger, Wehner & Wolf, Science 2006



Path integration

McNaugthon et al., Nature Review Neuroscience 2006



Head directions 
(angular orientation)



Head-direction cells (in rats) 

Fit with von Mises tuning curve (circular Gaussian)

Cells found by Ranck/Taube …
Figure adapted from Zhang 1996, J. Neurosci



▪ HD cells only fire when head of rat is pointing in the preferred direction in the 
horizontal plane, regardless of location

▪ HD preferred direction is stable across environments (unless animal is 
disoriented) 

▪ If linked to landmarks, rotating landmarks rotates HD cells; HD cells can be 
associated with a landmark within minutes (and remember the association)

▪ HD fire in total darkness (presumably by integration self-motion cues!)

▪ However, HD direction may drift during long recordings in the dark (see next 
slide)

▪ Preferred directions of different HDs are tightly coupled, so that a landmark 
rotation induces a consistent rotation (stable differences)! 

Head-direction properties

Zhang 1996, J. Neurosci



A drifting multi-unit recording

Skaggs et al. 1995, NeurIPS



Neural dynamics for landmark orientation and angular path integration

Seelig & Jayaraman Nature 2013



Compass-like representation of landmark orientation

Seelig & Jayaraman Nature 2013



Activity of the central complex in the absence of a 
visual cue (darkness)

Seelig & Jayaraman Nature 2013



Recurrent neural networks
and path integration

Recap: path integration is a 
fundamental ability that depends on 
accumulating velocity signals (from 
the vestibular, proprioceptive 
…senses) to form a representation 
where one is in space.

In mammals, head direction, grid and 
place cells have been implicated

Questions:

1. How to engineer neural systems for 
path integration? -> ring attractors 

2. Next week: How to learn path 
integration from scratch?

3. Next week: Are the solutions related?



Attractor models

Functions:
- Associative memory
- Decision making 
- Path integration 
- …

Khona & Fiete, Nat Review Neuro 2021



Recurrent neural network (RNN)

..
Rate update equation

𝑟(𝑡)

𝑟𝑖 (𝑡)

𝑟𝑁 (𝑡)

𝑟1 (𝑡)

rate of neuron i at time t

..

𝑟(𝑡 + 1)

𝑟 𝑡 + 1 = 𝑊 𝑟 𝑡 + 𝐼 (𝑡)

Just showing 
some connections…

𝐼 (𝑡)



Recurrent neural network (RNN)

Rate + membrane equation

𝑢 𝑡 + 1 = 𝑊𝑟 𝑡 + 𝐼(𝑡)

r t + 1 = σ(𝑢 𝑡 + 1 )

..

𝑟(𝑡)

𝑟𝑖 (𝑡)

𝑟𝑁 (𝑡)

𝑟1 (𝑡)

element-wise nonlinearity

..

𝑟(𝑡 + 1)

Just showing 
some connections…

𝐼 (𝑡)



Ring attractor models

Khona & Fiete, Nat Review Neuro 2021



Average firing rate for all HD cells with same preferred phase 𝜃:

𝑓 = 𝑓 𝜃, 𝑡

Similarly,
𝑢 = 𝑢 𝜃, 𝑡

defines the average net inputs received by these units. The input is linked to the firing 
rate by some nonlinearity:

𝑓 = 𝜎 𝑢

The dynamics are governed continuous dynamics :

𝜏
𝜕𝑢

𝜕𝑡
= −𝑢 + 𝑤 ∗ 𝑓

With 𝑤 ∗ 𝑓 = 1/2𝜋 0׬
2𝜋
𝑤 𝜃 − 𝜑, 𝑡 𝑓 𝜑 𝑑𝜑

Zhang 1996, J. Neurosci



What do we know & what do we want to know?

𝜏
𝜕𝑢

𝜕𝑡
= −𝑢 + 𝑤 ∗ 𝑓



▪ The dynamics are the dynamics of a typical recurrent neural network 
(RNN)

▪ We built-in radial symmetry for the weights

Notes 

𝜏
𝜕𝑢

𝜕𝑡
= −𝑢 + 𝑤 ∗ 𝑓

Can we find weights, so that we get head-direction cells?



Finding a weight kernel that solves the equation

Zhang 1996, J. Neurosci

We can get the weights 
via the inverse Fourier transform

(Non-regularized version doesn’t converge!) 

We can find good approximate 
solutions, by encouraging “small 
solutions”:

Fredholm-integral equation of first kind:

𝜏
𝜕𝑢

𝜕𝑡
= −𝑢 + 𝑤 ∗ 𝑓

ℒ =
1

2𝜋
න

0

2𝜋

(𝑤 ∗ 𝑓 − 𝑢)2 𝑑𝜑 +
𝜆

2𝜋
න

0

2𝜋

w2 𝑑𝜑

= ෍

𝑛=−∞

∞

|ෞ𝑢𝑛 − ෞ𝑤𝑛 ෡𝑓𝑛|
2 + 𝜆 ෍

𝑛=−∞

∞

|ෞ𝑤𝑛|
2

ෞ𝑤𝑛 =
ෞ𝑢𝑛 ෡𝑓𝑛

𝜆 + | ෡𝑓𝑛|
2

Note that ෞ𝑢𝑛 is given via 𝑓 = 𝜎 𝑢 , where is 𝜎 invertible! 



Synaptic weights supporting stable states 

Zhang 1996, J. Neurosci

𝑓 = 𝜎 𝑢

𝑢 = 𝑤 ∗ 𝑓



Synaptic weights supporting stable states 

Zhang 1996, J. Neurosci

𝑓 = 𝜎 𝑢

𝑢 = 𝑤 ∗ 𝑓



Network converges to stereotyped, localized activity

Zhang 1996, J. Neurosci



Network converges to stereotyped, localized activity

Zhang 1996, J. Neurosci

Persistent activity, independent of input (compare to HD activity in darkness)



How can we update the 
compass (head-
direction)?

Based on self-motion cues?



Activity of the central complex in the absence of a 
visual cue (darkness)

Seelig & Jayaraman Nature 2013



Shifting activity in the ring attractor



Skagg’s model for the head-direction system

Skaggs et al. 1995, NeurIPS

Note: asymmetric connectivity 
from 

the ”shift-circuit” 



How can we update the 
compass (head-
direction)?

Based on landmarks?



Compass-like representation of landmark orientation

Seelig & Jayaraman Nature 2013



Calibration with external view-dep. input

Zhang 1996, J. Neurosci



▪ Discussion of Bayesian multisensory integration (you will work on this in 
the problem set)

▪ Attractor models are powerful models of brain function (and make several 
non-trivial predictions)

▪ Path integration is an important brain function

▪ We also highlighted classic results in rats & more recent ones in fruit flies

▪ Attractor models can implement path integration; we focused on ring 
attractors. 

▪ Next week, you’ll see that one can ”learn” attractor-like models from 
normative goals

Take-home messages
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