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Bayesian perception

One may even say, strictly speaking, that almost
all our knowledge is only probable; and in the
small number of things that we are able to know
with certainty, the principles means of arriving at
the truth -induction and analogy- are based on

probabilities.

Pierre Simon Laplace. Theorie analytique des
probabilities. 1825.
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Perception is a probabilistic process

= P(k|x) the conditional probability of evoking spike rate
k given that stimulus x was presented (called likelihood
for observed k)

= P(x|k) the conditional probability of observing stimulus
x given k was recorded

So far we have seen this for k spikes, but the
representation can also be modeled as an “abstract
variable”.
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How does the brain create
a coherent and
unambiguous percept
based on multiple sensory

streams?




=PFL Visual-haptic cue Integration

CRT
) Paradigm: 2-interval forced-choice
gla;ses (2'|FC) taSk

Opaque Is h taller than hO?

mirror

Force-
feedback

devi L. . .
i Description: In the visual-haptic setup,

observers view the reflection of the
visual stimulus binocularly in a mirror
using stereo goggles. The haptic
stimulus is presented using two force-
feedback devices, one each for the
index finger and thumb. With this setup
the visual and the haptic virtual scenes
can be independently manipulated.

3 cm equals 100%

Ernst, M. O. (2006). A Bayesian View on Multimodal Cue Integration Oxford University Press.
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=PFL  Bayesian formulation
joint estimate visual estimate

w = argmax,, P(w|t,v)

/ Generative model

P(t,v|w)P(w)

P (‘t;'V)/ assumption
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Bayesian formulation

Generative model:  P(t, v |w)
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=PFL  Bayesian cue integration
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=PFL  Bayesian cue integration
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=PFL  Mean and variance of the joint estimate
P(w|t,v) « P(tlw)P(v|w)

Or equivalently:

Uy =
Vo of+o02  of +0f of +aZ\o2 = of
2 2
O'V%,: O-to-v i=i+i
of + o7 o o2 of

You’ll demonstrate this in the exercises!



=PFL  Bayesian cue integration
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Do humans behave
according to this theory?




=PFL  Humans (can) optimally integrate vision and haptic
information
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Ernst, M. O. (2006). A Bayesian View on Multimodal Cue Integration Oxford University Press.
Ernst & Banks, Nature 2002
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Path integration and
attractor models




=PFL  Animal navigation

Trends in Ecology & Evolution

- as captured from 11 March 2021 to 3 November 2021 via GPS
https://animallives.org



https://animallives.org/

=P'L  How do animals navigate?

Using various external cues: Alternative:

= Remembering landmarks By path integration/dead

= Magnetoreception reckoning...

= Olfaction

= Polarized light (e.g., bees)
- Sun/moon/stars In the field m In the planetarium

160

] B e |
= Way-marking (e.g., wood-mice) K I I | |

A Starry sky visible B Stamy sky occluded F"*—‘ ._: BU% |
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Dung Beetles Use the Milky Way for Orientation, Dacke et al. Current Biology 2013



=PFL  Path integration
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Srinivasan, Journal of Comparative Physiology A, 2015
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How do ants estimate the distance?
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Wittlinger, Wehner & Wolf, Science 2006



=PFL  Path integration
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McNaugthon et al., Nature Review Neuroscience 2006
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Head directions
(angular orientation)




=PFL  Head-direction cells (In rats)
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Figure 2. A typical HD cell has stereotyped direc- Head Direction 8 — 8 Head Dirsction 9 — 6y

tional tuning curve. Its firing rate recaches maximum
when the head direction 0 is aligned with the preferred
direction 8. Data points and fitting curves are shown in
both Cartesian and polar coordinates. A, An anterior
thalamic HD cell with medium peak rate. Data from
Figure 48 in Taubce (1995). Parameters: K = 8.08, 4 =
2.53 Hz, and Be® = 34.8 Hz. B, A postsubicular HD cell
with high peak rate. Data from Figure 3C in Taube et
al. (1990a). Parameters: K = 5.29, A = 1.72 Hz, and
Be® = 94.8 Hz. (Digital data courtesy of J. S. Taube.)

Fit with von Mises tuning curve (circular Gaussian)
f — A + BGKC(‘}.H(()—UU)

- Cells found by Ranck/Taube ...
Figure adapted from Zhang 1996, J. Neurosci



=P*L  Head-direction properties

= HD cells only fire when head of rat is pointing in the preferred direction in the
horizontal plane, regardless of location

= HD preferred direction is stable across environments (unless animal is
disoriented)

= |If linked to landmarks, rotating landmarks rotates HD cells; HD cells can be
associated with a landmark within minutes (and remember the association)

= HD fire in total darkness (presumably by integration self-motion cues!)

= However, HD direction may drift during long recordings in the dark (see next
slide)

= Preferred directions of different HDs are tightly coupled, so that a landmark
rotation induces a consistent rotation (stable differences)!

Zhang 1996, J. Neurosci



=PrL A drifting multi-unit recording

=0 A? % 4 4
1 2

Figure 2: Shifts in alignment of a head direction cell over the course of a single
recording session (one minute intervals).

Skaggs etal. 1995, NeurlPS
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Neural dynamics for landmark orientation and angular path integration

Seelig & Jayaraman Nature 2013



=PFL Compass-like representation of landmark orientation
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Seelig & Jayaraman Nature 2013
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=PFL Activity of the central complexin the absence of a
visual cue (darkness)
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Recurrent neural networks
and path integration

Questions:

1. How to engineer neural systems for
path integration? - ring attractors

2. Next week: How to learn path
integration from scratch?

3. Next week: Are the solutions related?
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Attractor models

STATE SPACE

-

]

—

Functions:

Associative memory
Decision making
Path integration

Khona & Fiete, Nat Review Neuro 2021



=PFL Recurrent neural network (RNN)

[(t)

() @ Rate update equation
r(t+1) =Wr(t) +

Just showing
some connections...

rate of neuroniat time t



=PFL Recurrent neural network (RNN)

I(t)
r(t) rt+1)
ry (t) ‘ >
@ .
O Rate + membrane equation
(1) @
. u(t+1) =Wr(t) +1(t)
: r(t+1) = o(u(t + 1))
. Just showing ’ element-wise nonlinearity
TN (t) some connections... .



=PFL  Ring attractor models
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Khona & Fiete, Nat Review Neuro 2021
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Average firing rate for all HD cells with same preferred phase 6:

f=16.1

Similarly,
u=u(o,t)

defines the average net inputs received by these units. The input is linked to the firing
rate by some nonlinearity:

f=o)

The dynamics are governed continuous dynamics :

With w * f = 1/2nf02nw(9 — o, t)f(p)de

Zhang 1996, J. Neurosci



=P7L What do we know & what do we want to know?

T—=—-u+t+wsx*f



=PrL Notes

= The dynamics are the dynamics of a typical recurrent neural network
(RNN)

= \WWe built-in radial symmetry for the weights

Can we find weights, so that we get head-direction cells?

ou
_—_ *
Tat— u+wxf



=P'L  Finding a weight kemel that solves the equation

u N f
T—=—-u+w:s*
at

Non-reqularized version doesn’t converge!
( g ge!) Fredholm-integral equation of first kind:

We can find good approximate . 1 2 A 2
solutions, by encouraging “small L= ZTJ (W * f — u) d(p + E W d(p

solutions”:

0 0
(0 0) (0 0)
= D G- Tk ) (TP
n=—0oo n=—oo
U fn

— We can get the weights
n /1 + |f"\ |2 via the inverse Fourier transform
n

Note that i, is givenvia f = o(u), where is o invertible!
Zhang 1996, J. Neurosci



=PrL  Synaptic weights supporting stable states
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Figure 4. Synaptic weight distribution supporting stable
activity profiles assuming sigmoid function of the form in
Equation A. In A4, the input current is in arbitrary units.
Large firing rate at zero current is caused by the constant
bias ¢. Paramcters: g = 0.8, b = 10, ¢ = 0.5, and a = 6.34
(determined by the scaling condition a1 — ¢) = f,.. = 40
Hz). B, Synaptic weight distribution function w(#) solved at
different levels of regularization for smallness. Function w(#)
describes the average strength of synaptic weights between - Ly (& e
units whose preferred directions differ by the angle 6. For g i [ ' (\ i
appropriate scaling, we use A, = A/max/f,|* to quantify " \
the regularization. The desired static profile is of the j‘-’:}11
form in Equation 1 withK = 8,4 = 1 Hz, and f,,,, = 4

+ Be* = 40 Hz. C, When the weight regularization is too

strong, the actual stable firing profile tends to be blunter

than the desired one, or even becomes totally flat (not
shown). On the other hand, when the regularization is
too weak, the stable profile may suddenly become
multiple-peaked.

B Weight Regularization

L
\

Zhang 1996, J. Neurosci



=PrL  Synaptic weights supporting stable states

C Stable States
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activity profiles assuming sigmoid function of the form in
Equation A. In A4, the input current is in arbitrary units. % Lo -10% A
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than the desired one, or even becomes totally flat (not T
shown). On the other hand, when the regularization is 0° 180° 360°

too weak, the stable profile may suddenly become
multiple-peaked.

Population of Head Direction Cells

Zhang 1996, J. Neurosci



=P7L " Network converges to stereotyped, localized activity
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Zhang 1996, J. Neurosci



=P7L " Network converges to stereotyped, localized activity

A B

Firing Rate : ] . .
f (Hz) ‘ ./ 700 Figure 3. Snapshots of the time evolution of
’ 600 /600 the model obtaincd by numerical integration of

/ the continuous Equation 2, showing the emer-

gence of the same stable firing profile from two

arbitrary initial statcs. The final profilc has ste-
reotyped shape, but its peak potentially can be
centered anywhere (neutral equilibrium). The

{msec) HD cells are indexed by their preferred direc-

(o}
V0 18_0 > tions (ranging from 0° to 360°}. Free parameter
Population of ~ 360° Population of  360° 7 = 10 msec. Other parameters are as in Figure
HD Cells HD Cells 4 under the regularization A, = 10 .

Persistent activity, independent of input (compare to HD activity in darkness)

Zhang 1996, J. Neurosci
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How can we update the
compass (head-
direction)?

Based on self-motion cues?
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=PFL Activity of the central complexin the absence of a
visual cue (darkness)
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Seelig & Jayaraman Nature 2013



=PFL  Shifting activity in the ring attractor

A Weight Modification
with Derivative

H

02 A we

Synaptic Weight Distributions

180° 0° 180°

C Activity Shift

Figure 6. Dynamic activity shift occurs if and only if
the synaptic weight distribution function has a nonzero
odd component. [ntuitively, the odd components in
these examples serve to excite the right neighbors so as
to move the activation toward the right, and at the s

same time inhibit the left neighbors so as to crase the FI?r}%gate
trail. 4, C, When the odd component is proportional
to the derivative of the static even-weight distribution,
the shift does not disturb the shape of the static
activity profile. We chose y = —0.063, which yields the
speed v/t~ 360°/sec. Other parameters including the ]
even-weight distribution W(#) are identical to those in
Figure 3. B, D, When the odd component is sinusoidal,
the traveling profile has a difierent shape. We chose o
= (L.00201 so that the averages of le sin 6/ and 1YW’ (6)!
are equal.

A Time
Population of 3500 (msec)
HD Cells



=PFL  Skagg's model for the head-direction system

Note: asymmetric connectivity
from
the ”shift-circuit”

Rotation ceil (1eft)
Rotation cell (right)

Skaggs etal. 1995, NeurlPS
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How can we update the
compass (head-
direction)?

Based on landmarks?




=PFL Compass-like representation of landmark orientation
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Figure 10.  External input from a local-view detector
calibrates the internal direction maintained by the
HD cell network. In each of the three examples, the
external input always starts at time 100 msec and
holds constant for 0.5 sec. The distribution of the
external input has the same shape as the distribution
of the intrinsic input among the HD cells in the static
state, but its magnitude is 25% as strong. Other
parameters are as in Figure 3.
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2600 H 40 Hz
_ 0Hz

Zhang 1996, J. Neurosci



=PFL  Take-home messages

= Discussion of Bayesian multisensory integration (you will work on this in
the problem set)

= Attractor models are powerful models of brain function (and make several
non-trivial predictions)

= Path integration is an important brain function
= We also highlighted classic results in rats & more recent ones in fruit flies

= Attractor models can implement path integration; we focused on ring
attractors.

= Next week, you'll see that one can "learn” attractor-like models from
normative goals
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